Skill-driven Model Training for Solar Forecasting with Sky Images

Amar Meddahi^{1,2}, Arttu Tuomiranta², and Sebastien Guillon²

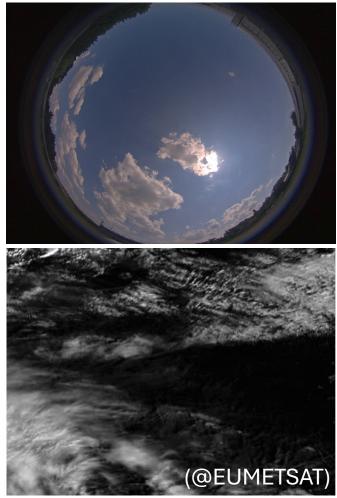
¹O.I.E. – Mines Paris – PSL University, Sophia-Antipolis (France)

²TotalEnergies, Paris-Saclay (France)

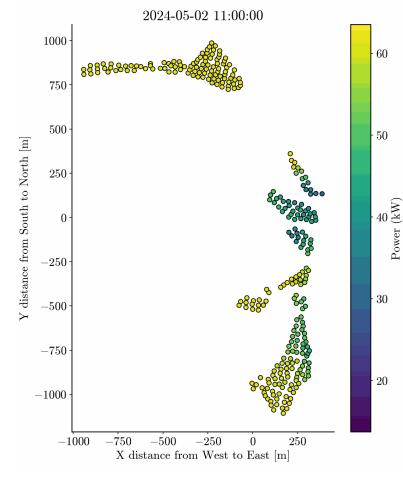
IEA PVPS Task 16, 15th Task meeting (Golden, CO) – October 29, 2024

Context: Solar irradiance variability

Meteorological factors



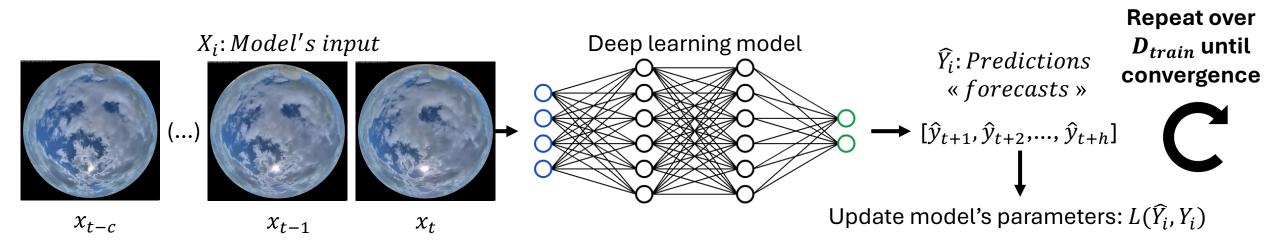
Variability of surface solar irradiance (SSI) and PV power production (ex. 25 MW)



Accurate solar forecasting for supply-demand balance and grid stability

A. Meddahi et al. - IEA PVPS Task 16, 15th Task meeting (Golden, CO)

Background: Data-driven solar forecasting



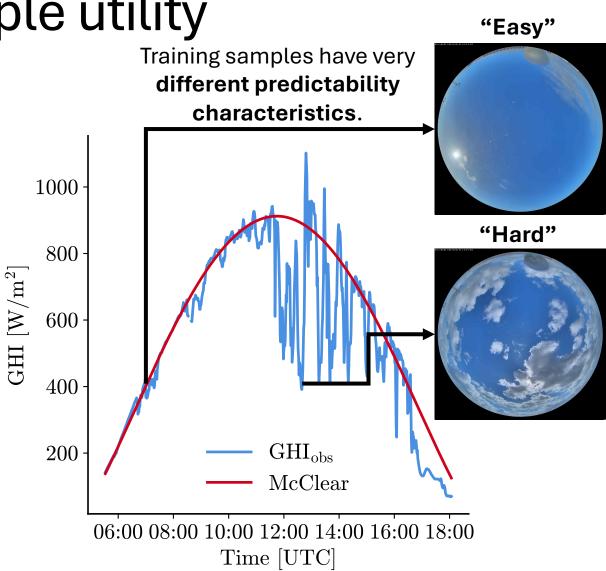
Deep learning model development process for a single training sample (X_i, Y_i)

- $D_{train} = \{(X_i, Y_i)\}_{i=1}^N$ represents the training dataset, used to optimize the model's parameters during the learning process.
- *N* is typically very large, ranging from **10⁶ to 10⁸**, representing years of on-site data acquisition.
- General rule: More data leads to better model performance.

Motivation: Training sample utility

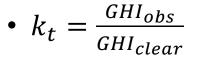
Research questions:

- How can the relevance of training samples be evaluated?
- What is the optimal sampling strategy?
- What training resources can be conserved?



Proposal: Skill-driven sampling strategy

• We proposed to score the different training samples $\{(X_i, Y_i)\}_{i=1}^N$ using the **clear sky index persistence error**:



•
$$\varepsilon_{persistence}(h) = |k_{t+h} - k_t|$$

•
$$S = 1 - \frac{E_{model}}{E_{persistence}}$$

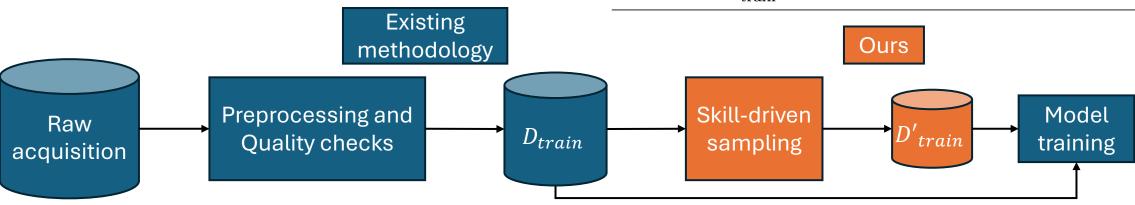
Algorithm 1 Skill-Driven Sampling

- 1: Input: D_{train} , forecasting horizon h, error threshold τ ,
- 2: Output: D'_{train}
- 3: Initialize D'_{train} to an empty set
- 4: for each $(x_i, y_i) \in D_{\text{train}}$ do
- 5: Compute $\varepsilon_{\text{persistence}}(h)$

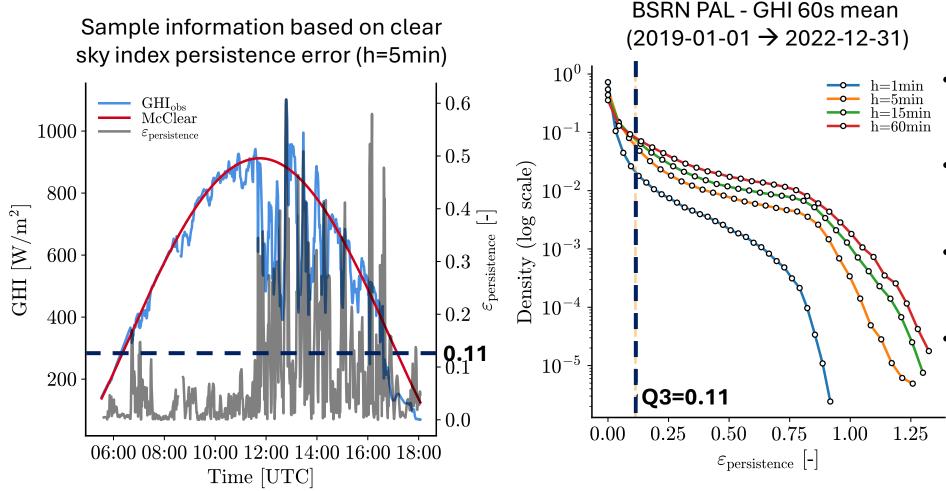
6: **if**
$$\varepsilon_{\text{persistence}}(h) > \tau$$
 then

7: Add
$$(x_i, y_i)$$
 to D'_{train}

0: return
$$D'_{\text{train}}$$



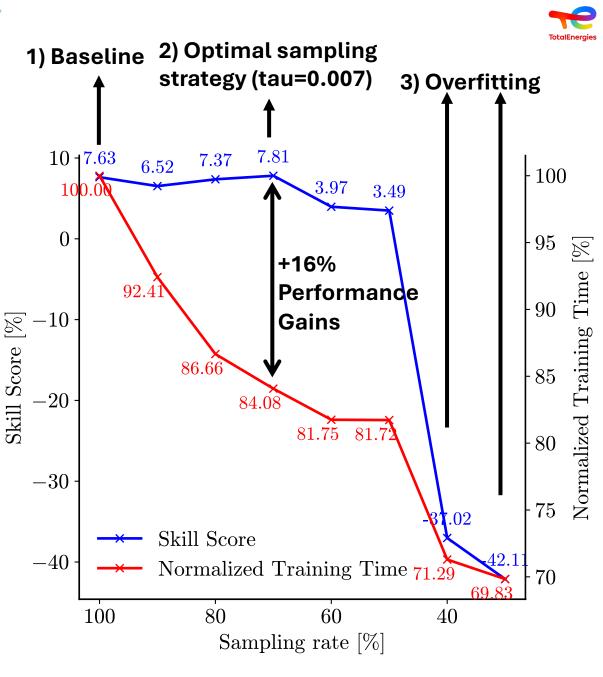
Example: Skill-driven sampling strategy



- Majority of samples show persistent clear sky index behaviors.
- High persistence performance typically leads to low skill score.
- Computational resources potentially wasted on uninformative data.
- But also, in BOS (Q3=0.08), RUN (Q3=0.11), and IZA (Q3=0.02)

Validation

- Testing site:
 - La Tour-de-Salvagny (near Lyon, France)
- Hardware:
 - Visible sky imager
 - Class A pyranometer (GHI)
- Model:
 - CNN-based neural network (28M parameters)
 - Forecasting horizon: 5min
- Validation:
 - Jul 2019 → Jul 2023
 - 60-second resolution
 - After preprocessing and quality checks, 324991 testing samples (10-fold cross-validation)
- Conclusion:
 - The skill-driven sampling strategy identified that <u>30% of</u> <u>the training data did not contribute to model</u> <u>improvement.</u>
 - Refining the dataset enabled a <u>16% reduction in training</u> <u>time compared to the baseline.</u>



Key takeaways

- When developing data-driven systems for solar forecasting tasks, a considerable amount of data may turn out to be uninformative for the model, leading to a slowdown in its development.
- The persistence error, based on the clear sky index, serves as a relevant proxy to estimate sample training utility for very short-term solar forecasting tasks.
- Our skill-driven sampling strategy reduced the dataset size by 30% and lowered computational resource requirements by 16% compared to the existing methodology.
- This gain in computational resource will be particularly valuable for the development of multi-site models and online learning.

- Contact*: amar.meddahi@minesparis.psl.eu
- This work is sponsored by **TotalEnergies** and partly funded by the French national agency for research and technology (**ANRT**) under the CIFRE contract 2023/1435.
- Work presented @EU PVSEC 2024 (Vienna)
- Extended manuscript under review at Solar RRL.

<u>*Amar Meddahi</u> PhD Student (O.I.E. – Mines Paris – PSL & TotalEnergies) **Topics**: Spatial-temporal variability of irradiance, imagebased solar forecasting, cloud characterization, geographic generalization, data-driven methods and PV power production application

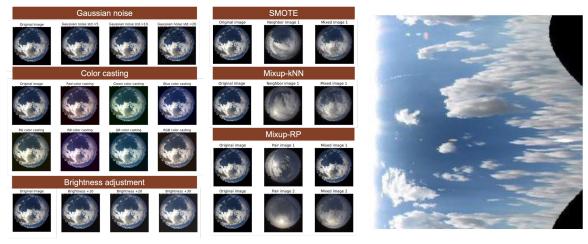
Data-centric methods for data-driven solar forecasting systems: Related work

- Nie, Yuhao, Ahmed S. Zamzam, and Adam Brandt. "Resampling and data augmentation for short-term PV output prediction based on an imbalanced sky images dataset using convolutional neural networks." Solar Energy 224 (2021): 341-354.
- Paletta, Quentin, Guillaume Arbod, and Joan Lasenby. "Cloud flow centring in sky and satellite images for deep solar forecasting." WCPEC-8. 2022. 5.
- Paletta, Quentin, et al. "SPIN: Simplifying Polar Invariance for Neural networks Application to vision-based irradiance forecasting." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- Liu, Ling-Man, et al. "Dual-dimension Time-GGAN data augmentation method for improving the performance of deep learning models for PV power forecasting." Energy Reports 9 (2023): 6419-6433.
- Fabel, Yann, et al. "Combining Deep Learning and Physical Models: A Benchmark Study on All-Sky Imager-Based Solar Nowcasting Systems." Solar RRL 8.4 (2024): 2300808.

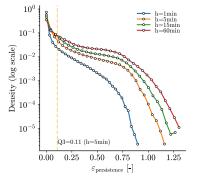
Perspectives

 Combining skill-driven sampling with data augmentation methods to limit small dataset problems.

Nie et al., Solar Energy, 2021 Paletta et al., CVPR, 2022



- We found experimentally that tau=0.007 was the optimal training threshold based on one location.
- While we expect to remain applicable to other datasets, it needs to be demonstrated.

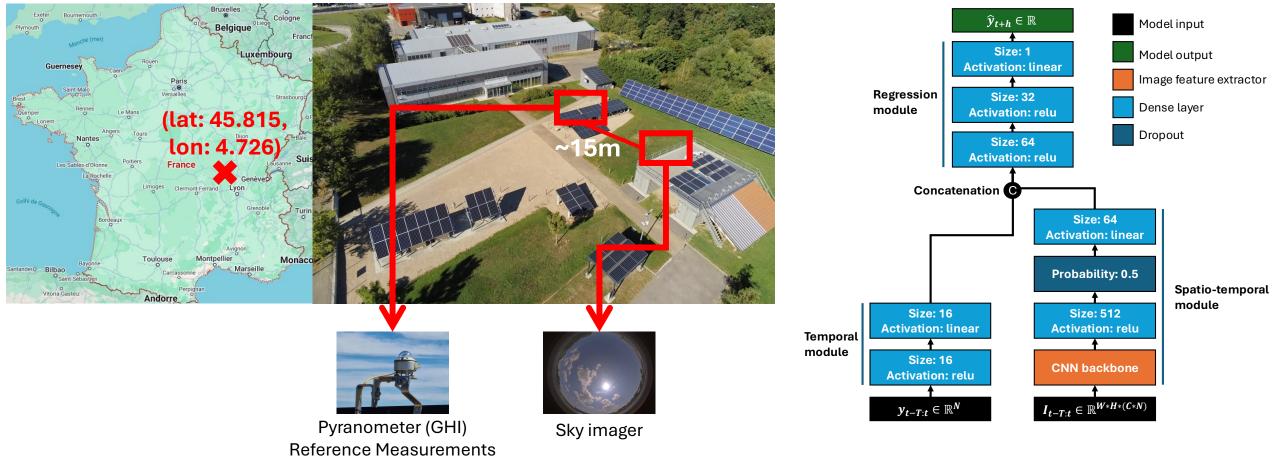


Ex. BSRN RUN (2019-01-01 → 2023-12-31)

Similar $\varepsilon_{persistence}$ distribution to BSRN PAL.

Methodology

Testing site



Model architecture overview

Model performance assessment

Model	\downarrow MBE Wm ⁻² (%)	\downarrow MAE Wm ⁻² (%)	\downarrow RMSE Wm ⁻² (%)	↑ RMSE Skill Score %	_
	-fold Cross-valie	Our model vs.			
Ours	$0.10 \ (0.02)$	38.10(9.63)	$85.84\ (21.70)$	7.63	Actual GHI observations
Observ	vation Mean: 39				
Visit	ble commercial	Our model vs.			
Visible	$6.35\ (1.99)$	49.48(15.52)	$89.96\ (28.21)$	-11.20	Commercial solution A vs.
		$35.30\ (11.07)$		9.94	actual GHI observations
Obser	rvation Mean: 3				
Infra	red commercial	Our model vs.			
Infrared	$12.92\ (5.46)$	$34.09\ (14.40)$	$71.81 \ (30.32)$	-28.75	Commercial solution B vs.
Ours		27.20(11.48)		6.11	actual GHI observations
Obser	vation Mean: 2				

Skill-driven sampling validation

au (%)	↓ MBE Wm ⁻² (%)	↓ MAE Wm ⁻² (%)	$\downarrow \text{RMSE} \\ \text{Wm}^{-2} (\%)$	↑ RMSE Skill Score %	↓ Normalized Training Time %			
0.061(30)	13.02(3.29)	66.35(16.77)	132.06(33.39)	-42.11	69.83			
0.038(40)	3.48(0.88)	50.64(12.80)	127.34 (32.19)	-37.02	71.29			
0.023(50)	3.04(0.77)	43.85(11.09)	89.68(22.67)	3.49	81.72			
0.014(60)	2.61(0.66)	41.19(10.41)	89.24(22.56)	3.97	81.75			
0.007(70)	3.37(0.85)	39.51(9.99)	85.67(21.66)	7.81	84.08			
0.004(80)	1.13(0.28)	38.82(9.81)	86.08(21.76)	7.37	86.66			
0.002(90)	0.64(0.16)	38.85 (9.82)	86.87(21.96)	6.52	92.41			
0.000 (100)	0.10(0.02)	38.10(9.63)	85.84(21.70)	7.63	100			
	Observation Mean: 395.54 Wm^{-2} – Observation Number: 324991							