Skill-driven Model Training for Solar Forecasting with Sky Images

Amar Meddahi^{1,2}, Arttu Tuomiranta², and Sebastien Guillon²

¹O.I.E. – Mines Paris – PSL University, Sophia-Antipolis (France)

²TotalEnergies, Paris-Saclay (France)

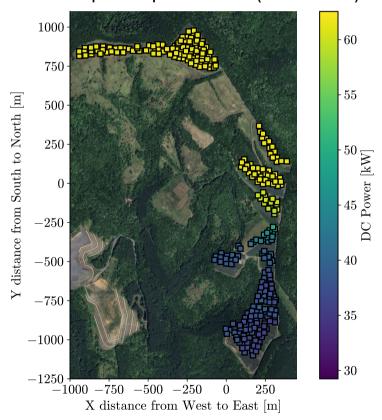
41st EU PVSEC (Vienna) – September 25, 2024

Context: Solar irradiance variability

Meteorological factors

2024-09-25

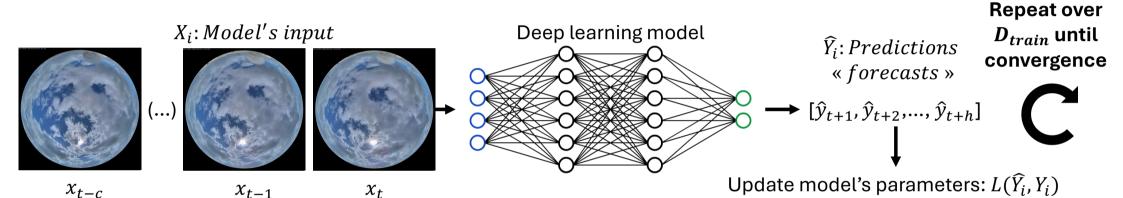
Variability of surface solar irradiance (SSI) and PV power production (ex. 25 MW)



A. Meddahi et al. - 4CO.9_2 - 41st EU PVSEC (Vienna)

Accurate solar forecasting for supply-demand balance and grid stability

Background: Data-driven solar forecasting



Deep learning model development process for a single training sample (X_i, Y_i)

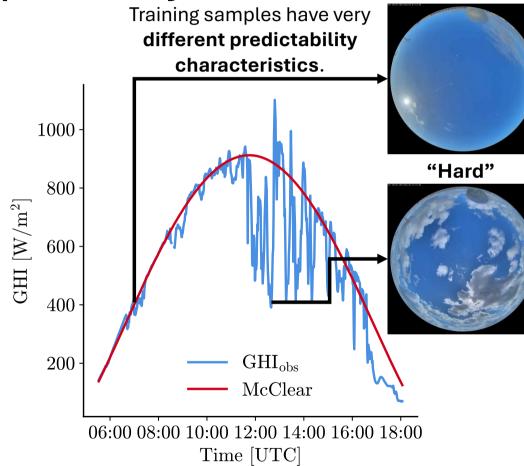
- $D_{train} = \{(X_i, Y_i)\}_{i=1}^N$ represents the training dataset, used to optimize the model's parameters during the learning process.
- N is typically very large, ranging from 10^6 to 10^8 , representing years of on-site data acquisition.
- General rule: More data leads to better model performance.

"Easy"

Motivation: Training sample utility

Research questions:

- How can the relevance of training samples be evaluated?
- What is the optimal sampling strategy?
- What training resources can be conserved?



2024-09-25

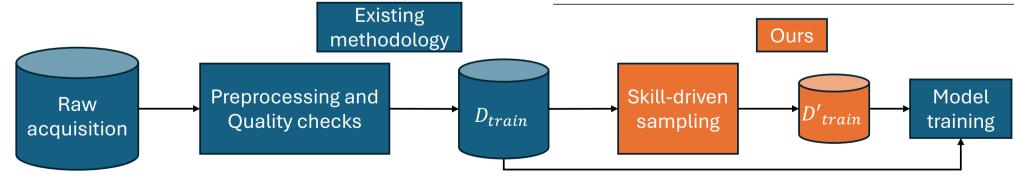
A. Meddahi et al. - 4CO.9_2 - 41st EU PVSEC (Vienna)

Proposal: Skill-driven sampling strategy

- We proposed to score the different training samples $\{(X_i,Y_i)\}_{i=1}^N$ using the clear sky index persistence error:
 - $\varepsilon_{persistence}(h) = |k_{t+h} k_t|$
 - $k_t = \frac{GHI_{obs}}{GHI_{clear}}$
- $S = 1 \frac{E_{model}}{E_{persistence}}$

Algorithm 1 Skill-Driven Sampling

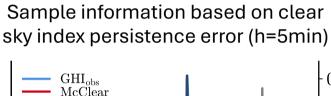
- 1: **Input:** D_{train} , forecasting horizon h, error threshold τ ,
- 2: Output: D'_{train}
- 3: Initialize D'_{train} to an empty set
- 4: for each $(x_i, y_i) \in D_{\text{train}}$ do
- 5: Compute $\varepsilon_{\text{persistence}}(h)$
- 6: if $\varepsilon_{\text{persistence}}(h) > \tau$ then
- 7: Add (x_i, y_i) to D'_{train}
- 8: end if
- 9: end for
- 10: **return** D'_{train}

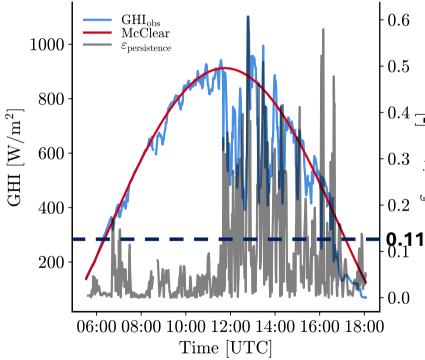


2024-09-25

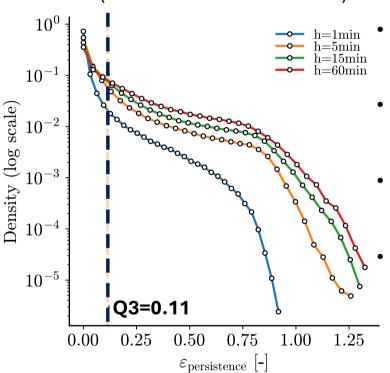
A. Meddahi et al. - 4CO.9_2 - 41st EU PVSEC (Vienna)

Example: Skill-driven sampling strategy





BSRN PAL - GHI 60s mean (2019-01-01 → 2022-12-31)



- Majority of samples show persistent clear sky index behaviors.
- High persistence performance typically leads to low skill score.
- Computational resources potentially wasted on uninformative data.
 - But also, in BOS (Q3=0.08), RUN (Q3=0.11), and IZA (Q3=0.02)

2024-09-25

A. Meddahi et al. - 4CO.9_2 - 41st EU PVSEC (Vienna)

Validation

• Testing site:

• La Tour-de-Salvagny (near Lyon, France)

· Hardware:

- · Visible sky imager
- Class A pyranometer (GHI)

Model:

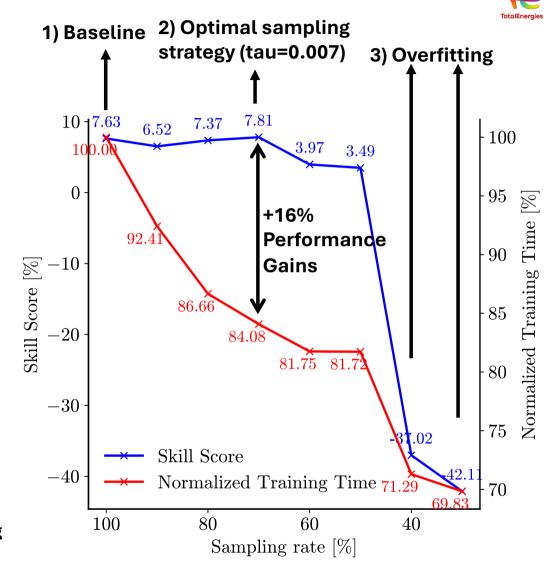
- CNN-based neural network (28M parameters)
- Forecasting horizon: 5min

Validation:

- Jul 2019 → Jul 2023
- 60-second resolution
- After preprocessing and quality checks, 324991 testing samples (10-fold cross-validation)

Conclusion:

- The skill-driven sampling strategy identified that 30% of the training data did not contribute to model improvement.
- Refining the dataset enabled a 16% reduction in training time compared to the baseline.



2024-09-25

A. Meddahi et al. - 4CO.9_2 - 41st EU PVSEC (Vienna)

Key takeaways

- When developing data-driven systems for solar forecasting tasks, a considerable amount of data may turn out to be uninformative for the model, leading to a slowdown in its development.
- The persistence error, based on the clear sky index, serves as a relevant proxy to estimate sample training utility for very short-term solar forecasting tasks.
- Our skill-driven sampling strategy reduced the dataset size by 30% and lowered computational resource requirements by 16% compared to the existing methodology.
- This gain in computational resource will be particularly valuable for the development of multi-site models and online learning.

Thank you for your attention!

- Contact*: amar.meddahi@minesparis.psl.eu
- This work is sponsored by **TotalEnergies** and partly funded by the French national agency for research and technology (**ANRT**) under the CIFRE contract 2023/1435.
- www.eupvsec-proceedings.com:
 - Short-paper
 - Slides
- Extended manuscript under review at Solar RRL.

*Amar Meddahi
PhD Student (O.I.E. – Mines
Paris – PSL & TotalEnergies)
Topics: Spatial-temporal
variability of irradiance, imagebased solar forecasting, cloud
characterization, geographic
generalization, data-driven
methods and PV power
production application

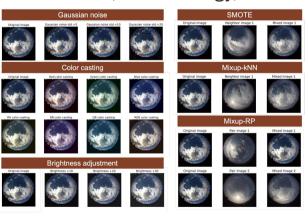
Data-centric methods for data-driven solar forecasting systems: Related work

- Nie, Yuhao, Ahmed S. Zamzam, and Adam Brandt. "Resampling and data augmentation for short-term PV output prediction based on an imbalanced sky images dataset using convolutional neural networks." Solar Energy 224 (2021): 341-354.
- Paletta, Quentin, Guillaume Arbod, and Joan Lasenby. "Cloud flow centring in sky and satellite images for deep solar forecasting." WCPEC-8. 2022. 5.
- Paletta, Quentin, et al. "SPIN: Simplifying Polar Invariance for Neural networks Application to vision-based irradiance forecasting." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- Liu, Ling-Man, et al. "Dual-dimension Time-GGAN data augmentation method for improving the performance of deep learning models for PV power forecasting." Energy Reports 9 (2023): 6419-6433.
- Fabel, Yann, et al. "Combining Deep Learning and Physical Models: A Benchmark Study on All-Sky Imager-Based Solar Nowcasting Systems." Solar RRL 8.4 (2024): 2300808.

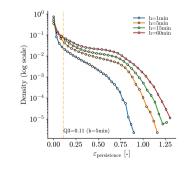
Perspectives

 Combining skill-driven sampling with data augmentation methods to limit small dataset problems.

Nie et al., Solar Energy, 2021 Paletta et al., CVPR, 2022



- We found experimentally that tau=0.007 was the optimal training threshold based on one location.
- While we expect to remain applicable to other datasets, it needs to be demonstrated.



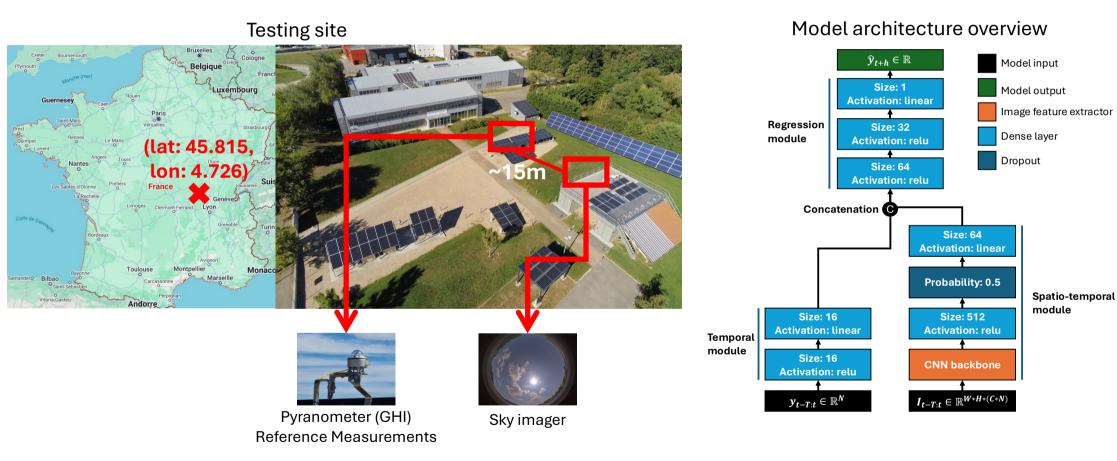
Ex. BSRN RUN (2019-01-01 \rightarrow 2023-12-31)

• Similar $\varepsilon_{persistence}$ distribution to BSRN PAL.

2024-09-25

A. Meddahi et al. - 4CO.9_2 - 41st EU PVSEC (Vienna)

Methodology



2024-09-25

A. Meddahi et al. - 4CO.9_2 - 41st EU PVSEC (Vienna)

Model performance assessment

Model	↓ MBE Wm ⁻² (%)	↓ MAE Wm ⁻² (%)	↓ RMSE Wm ⁻² (%)	† RMSE Skill Score %	•	
	$-fold\ Cross-valid$ $0.10\ (0.02)$	Our model vs. Actual GHI observations				
	vation Mean: 39	Our model vs.				
	$-1.24\ (-0.39)$	$egin{array}{c} 49.48 \; (15.52) \ 35.30 \; (11.07) \ 818.89 \; \mathrm{Wm}^{-2} - 0 \end{array}$	$72.86\ (22.85)$	-11.20 9.94 where 6872	Commercial solution A vs. actual GHI observations	
Infra	red commercial	Our model vs.				
Infrared Ours Obser	$0.21\ (0.09)$	$34.09\ (14.40)$ $27.20\ (11.48)$ $236.84\ \mathrm{Wm^{-2}}$ – 0	52.37(22.11)	6.11	Commercial solution B vs. actual GHI observations	

Skill-driven sampling validation

au (%)	$\downarrow \mathrm{MBE}$ Wm^{-2} (%)	$\downarrow \mathrm{MAE} \ \mathrm{Wm^{-2}} \ (\%)$	$\downarrow \text{RMSE}$ Wm ⁻² (%)	† RMSE Skill Score %	↓ Normalized Training Time %		
0.061 (30)	13.02 (3.29)	66.35 (16.77)	132.06 (33.39)	-42.11	69.83		
0.038(40)	$3.48\ (0.88)$	50.64(12.80)	$127.34 \ (32.19)$	-37.02	71.29		
0.023(50)	3.04(0.77)	43.85 (11.09)	89.68 (22.67)	3.49	81.72		
0.014(60)	2.61(0.66)	41.19(10.41)	89.24(22.56)	3.97	81.75		
0.007(70)	$3.37\ (0.85)$	39.51 (9.99)	85.67(21.66)	7.81	84.08		
0.004(80)	$1.13\ (0.28)$	38.82(9.81)	86.08 (21.76)	7.37	86.66		
0.002(90)	0.64~(0.16)	38.85(9.82)	86.87 (21.96)	6.52	92.41		
0.000 (100)	0.10 (0.02)	38.10 (9.63)	85.84 (21.70)	7.63	100		
	Observation Mean: 395.54 Wm ⁻² – Observation Number: 324991						