
SIP-GAN: Generative Adversarial Networks for SIP
traffic generation

Amar Meddahi1,2, Hassen Drira2,3, Ahmed Meddahi2
1University of Toulouse, INP-ENSEEIHT, Toulouse, France

2IMT Nord Europe, Institut Mines-Télécom, Center for Digital Systems, Lille, France
3Univ. Lille, CNRS, UMR 9189 – CRIStAL – Lille, France

amar.meddahi@etu.inp-n7.fr, hassen.drira@imt-nord-europe.fr, ahmed.meddahi@imt-nord-europe.fr

Abstract—Generative adversarial networks (GANs) are one of
the major ML techniques for data augmentation and classifica-
tion, in the field of image processing, computer vision and natural
language processing. However, in the field of data networks and
protocols the use of GANs for data generation and classification
(at packet level) is very limited or relatively new. Although, GANs
specific properties and characteristics can be highly relevant in
this context (unsupervised technique). This limitation, is even
more critical if we consider network protocols or communication
oriented protocols such as SIP VoIP. To address this problem, we
propose ”SIP-GAN” an extension and adaptation of GANs model
for SIP, aiming to process and generate SIP traffic at packet level.
The proposed generic model includes an encoder, a generator,
and a decoder. The encoder extracts information from pcap
data, associates and converts these SIP data into a GAN image
representation. The generator is based on a DCGAN model,
that generates new SIP dataset from each extracted image. The
decoder combines the generated images and reconstruct a valid
pcap file (SIP file). A specific testbed, with a formal and practical
analysis, demonstrate the validity of the generated data, from the
SIP-GAN model. Also, the experimental and performance results
are globally satisfactory, showing the relevance of our proposed
SIP-GAN based traffic generator in this context.

Index Terms—generative adversarial networks, SIP, traffic
generation, data augmentation, networks security.

I. INTRODUCTION

GANs have been studied and applied to various fields
such as image, audio and videos. The advantage of GAN
lies in learning the intricate data distribution from the real
data and carefully reproducing similar but subtle variants
of the real data. For example, applied to images, a GAN
learns complex patterns and relationships between pixels and
generates news ones with similar properties but including a
variability compared to training images.

To the best of our knowledge, the existing techniques based
on GAN, to generate network data, in order to test the various
security devices implemented in networks, are very limited.
In fact, generating realistic network traffic, is a critical issue,
for developing and testing network security techniques (ex.
Intrusion Detection/Prevention Systems).

We should also point out the main weak points regarding
the typical generators, such as:

• Synthetic traffic generators are often unrealistic or suffer
from a data generation bias.

• Commercial test generators can be effective in certain
conditions, but are generally costly in terms of CAPEX
and OPEX.

• Most of the typical generators are not compatible with
some well-known traffic analyzers (ex. Wireshark) for a
fine-grained analysis [3].

The construction of a real database could be relevant,
but building a dataset is a time-consuming and costly task.
Besides, working on customer databases leads to privacy
concerns or issues. It is therefore essential to define new
methods or approaches to generate applications oriented or
specific databases, to increase the robustness of the dataset and
thus, the ad hoc security mechanisms. GANs are particularly
a promising technique, to solve the main current problems,
regarding network data generation. This contribution addresses
the main following research challenge, that is: to produce a
large corpus of realistic and labeled SIP traffic data, based on
cost-effective methods.

A. Related Works

Before describing in details our proposition, we first conduct
a literature review of existing work related to GANs from a
network security perspective. The use of GANs for network
security constitutes a new paradigm while research works in
this domain were first published in 2014. [4] paved the way
to many sub-research topics, especially in the computer vision
domain, but very few in the communications networks domain.
It is only in 2018 that the first contributions to the application
of GANs in computer network security appear. Following
by some specific contributions such as botnet detection [11],
attack generation [2], malware [8] and network data augmen-
tation [3].

1) Network Flow Level: [3] proposes to use GANs to
generate network traffic at the flow parameter level. Generally,
flow-based network traffic contains several typical attributes
such as IP address, time interval, port number, layer structure
sequence and options. The discrete nature of network traffic,
makes difficult to build adversarial network traffic. This is
mainly due to the main characteristics of GAN, that can
effectively generate continuous data, such as image synthesis.
However, GANs based on sequential data [12] allow to use
this type of data, but are complex in terms of implementation.978-0-7381-1316-6/21/$31.00 ©2021 IEEE

The proposed approach in [3] is structured following tree
steps: encoder, generator and decoder. In order to use the
discrete network traffic, the encoder is used. It encodes IP
address with a graph (source IP to destination IP) to exploit a
GraphGan [10]. It also encodes time intervals to an image,
to exploit an ImageGan [5]. And then, a GANs based on
sequential data is used to manage the layer structure sequence,
which is a sequential data. After the encoding process, data
are generated and then decoding process is activated to be able
to exploit the generated data.

2) Packet-Level: [1] proposes to exploit GANs to generate
traffic at the packet level. Excepted the checksums, all packet
fields are generated directly by a GAN. The GAN generates
three different types of traffic: ICMP PING, DNS queries and
HTTP Get requests. As opposed to the previous approach, the
author uses another method to generate traffic.

GANs are the best candidate to generate realistic images for
different computer vision applications. The idea is to focus on
this effective technique, but from a network traffic generation
perspective. For this, the author proposes to encode network
traffic data as n×n pixel images. Then, a traditional GAN
training is used and the generated network data is decoded.

B. Proposed Approach

Existing approaches consider network protocols as homo-
geneous or traffic generation at a network flow level only.
As opposed to the existing works, we proposed to exploit
and adapt Deep Convolutional Generative Adversarial Net-
works (DCGAN) to generate SIP traffic, while taking into
consideration its specific characteristics. Indeed, the proposed
approaches should be application oriented, to address the
specific characteristics or constraints for each type of ap-
plications and services, such as VoIP (QoS/QoE metrics).
Based on the structure of DCGAN, we propose SIP-GAN for
adversarial SIP traffic generation at the packet level. SIP-GAN
can be exploited to generate adversarial SIP data traffic, that is
compliant with the standards (RFCs) in terms of packet format,
content and state machine... Each byte of a network packet
can be mapped to a pixel and by extend, the SIP packet to a
grayscale image. So, the generation of adversarial SIP traffic
can be formulated as a GAN problem for image processing.

We also conduct tests and experiments with a real dataset,
which is defined and developed specifically to assess the
performance of the proposed scheme, while considering differ-
ent metrics. The experimental results show that the proposed
scheme can be used to generate adversarial SIP data traffic at
packet level. Our main contributions are the followings:

• A model, called SIP-GAN, based on the DCGAN struc-
ture, to generate adversarial SIP traffic at packet level by
formulating and mapping a SIP message (call-flow) to a
grayscale image.

• A practical method, with a specific python library, to
extract and process the bytes from different types of
packets. The proposed method and the library are generic
and are applicable to other types of network protocols.

• The experimental testbed, shows that the adversarial SIP
traffic generated by SIP-GAN gives, globally, satisfactory
results.

The rest of this paper is organized as follows. Section
II presents preliminaries related to GANs and SIP protocol.
Section III presents and describes the SIP-GAN architecture
and process. In section IV we describe the methodology to
extract and process the real dataset, we define and assess
different metrics to evaluate the performance of our proposed
approach. Finally, in section V we conclude and discuss some
potential perspectives and future works.

II. PRELIMINARIES

In this section, we focus on concepts and methods that
help to understand the proposed approach, from a network
perspective. We give a focus on GANs also from a network
perspective, with a SIP protocol overview.

A. GANs
GANs [4] can be compared to a game, where both players

are modeled by a neural network: the generative model G
and the discriminator model D. The generative model captures
the data distribution in order, to generate samples, while, the
discriminator model estimates the probability a sample belongs
to the training data, rather than in the generative model. The
two models compete with each other, in a minimax game and
finally reach Nash equilibrium.

The generator takes as input, a noise parameter z from a
normal distribution. Then, z parameter is mapped to a real
data space as G(z, θg) where θg are the parameters of the
generator’s neural network. Similarly, D(x, θd) is defined by
the parameters θd. D(x) denotes the probability that x belongs
to the real data, rather than to the generator’s distribution
pg . The discriminator is intended to maximize the probability
of giving the correct labels of the real samples and the
generated ones. Also, the generator is trained to minimize
log(1−D(G(z))). Thus, this is a typical minimax game and
the objective function is described by equation 1.

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z)))]
(1)

The objective function is related to Jensen-Shannon diver-
gence that minimizes the divergence between the generator’s
distribution pg and the real data distribution pdata. This
neural network architecture is still under consideration from
a scientific point of view, arousing a great interest from the
research community. The application of GANs is relatively
broad, as it covers or can be applied to different domains, and
a large part of these applications or use cases, still need to be
explored.

DCGAN [7] and [9] are key contributions, as they intro-
duce a series of recommendations for the architecture of the
generator and the discriminator.

So, we propose to take benefit from the specific properties
and characteristics of DCGAN, to apply and combine DCGAN
in the context of SIP architectures and protocols.

B. SIP Overview

Session Invitation Protocol (SIP) [6] is a signaling protocol
used for establishing, controlling and terminating call sessions
(voice, video or data oriented). On behalf SIP signaling, Real
Time Protocol and Real Time Control Protocol (respectively
RTP, RTCP) are used for the transfer and control of the media
flow (voice, video or data).

SIP is a ”rendezvous” protocol standardized by the IETF,
specified in RFCs 3261 and supplemented by RFC 3265,
with a number of other related RFCs, for supporting different
types of SIP services (Presence, IM...). SIP is a text based
signaling protocol, intended to establish, modify and termi-
nate multimedia sessions. SIP is independent of the media
communication protocol used during the session. Therefore, a
multitude of ad hoc protocols can be combined with SIP (ex.
RTP/RTCP, HTTP, SMTP...). As SIP is based on a client/server
request model, a SIP session is characterized by a succession
of well-defined transactions (ex. INVITE, BYE, CANCEL...).
SIP based communications are generally ”real time” oriented
and so, are sensitive to QoS metrics such as: delay, jitter or
packet loss in the media flow and connection delay, pre/post-
selection delays for the signaling flow. This end to end ”real
time” characteristic must be taken into consideration, when
exploiting GANs for SIP.

The next section describes, step by step, the application,
combination and adaptation of GAN in the field of network
protocols, for generating SIP packets.

III. SIP-GAN

SIP-GAN1 architecture and model is composed of different
blocks: an encoder, a generator, and a decoder. The encoder
extracts information from pcap data, and converts this pcap
trace into an image. Then, a DCGAN model is used to
generate new SIP data packets, for each extracted image
(data augmentation step). Finally, the decoder translates the
generated images, to retrieve the bytes, corresponding to the
new generated packets. From the generated SIP packets, a
valid pcap file is re-built, analyzed and validated, with a SIP
network analyzer tool (Wireshark). The overall process of SIP-
GAN is summarized and illustrated in figure 1.

Encoder Generator Decoder

SIP
Dataset

Image DCGAN

Z Z: latent vector

Image Gen SIP Gen pcap

Fig. 1. SIP-GAN based generator architecture

A. Encoder

The main principle of the encoder, is to build a grayscale
image from each byte of a SIP packet. Based on this encoder,
an image data set is defined and used to train the generator, in

1Code available at https://github.com/amarmeddahi/sip-gan

order to generate ”fake” SIP packets. Let S = {s1, ..., sp} be
a vector where {s1, ..., sp} represent the value of each byte in
the packet. If the SIP packet size is 500 bytes, so the length
of S will be of 1000 bytes. As an example, the byte 3F is
represented in S with s2k = 3 and s2k+1 = 15, where k
represents the byte position (index) in the SIP packet. We
note l the multi-mapping parameter such as, each si in S
is encoded and duplicated l × l times, in the corresponding
grayscale image. Let I ∈ Mm×n(R) be a matrix, where each
value corresponds to a pixel from a grayscale image, such
as mn = pl2. Let f be a bijective function (equation 2).
Algorithm 1 illustrates the proposed method for encoding SIP
packets.

f : [0, 15] → [0, 255]
x 7→ 16x+ 8

(2)

Algorithm 1 SIP-GAN encoder
Input: S: SIP packet to encode, l: multi-mapping parameter
Output: I: grayscale image corresponding to S

Initialization : I ∈ Mm×n(R), index = 0
1: for i = 0 to n and step = l do
2: for j = 0 to m and step = l do
3: I[i : (i+ l), j : (j + l)] = f(S[index])
4: index = index+ 1
5: end for
6: end for

The hexadecimal code takes 16 possible values
(010, ..., 1510). Once mapped with f , each value of the
hexadecimal code corresponds to a pixel value (i.e. ∈
[0, 255]) associated to one and predefined sub range:

• 010 −→f 8 ∈ [0, 15]
• 110 −→f 24 ∈ [16, 31]
• ...
• 1510 −→f 248 ∈ [240, 255]

In addition to the mapping process, and regarding each entry
of the matrix that represents the ”SIP” image, the value of the
associated pixel, is duplicated l×l times (redundancy). The
goal and benefit of this multi-mapping is to create clusters
of pixels, in order to improve the learning process of the
generator. The goal is also to reduce the byte error rates, for
the critical fields of the SIP packets (must be detected as a
valid pattern by the generator). Figure 2 gives an example of
SIP packets encoded by the algorithm 1.

Fig. 2. INVITE SIP Requests generated by the SIP-GAN encoder

B. Generator

The SIP-GAN generator is based on a modified and adapted
DCGAN model. The SIP protocol, is a communication ori-
ented and constrained protocol (with critical header fields for
SIP routing, real time characteristics...) that force the generator
to reconstitute these critical packet fields, rigorously (0 byte
error). These specific and critical fields are predefined and
characterized by a few bytes (ex. destination address, port
number 5060, ”via” field...). Figure 6 illustrates and gives an
example of such critical fields (ex. REQUEST Line and other
SIP header fields)

GANs, by nature do not consider this type of SIP com-
munication oriented protocol with specific content or charac-
teristics. Indeed, some specific pixels of the generated ”SIP”
image, may be inconsistent with the rest, without affecting or
impacting the global quality of the generation. In SIP context,
a false generated pixel in the Request Line field, implies that
the packet will not be recognized or detected as a SIP packet
and routed (by the SIP Proxy). For that, we propose to adapt
the training of the generator by introducing a quality factor
γ related to the critical fields. The principle is as follows: at
each iteration of the generator training, the quality factor γ is
computed on the generated samples by assessing the quality
of the generator for this iteration. We set an ε and a maximum
number of iterations K for the training stop condition to be
satisfied (γ ≤ ε ∨ k ≥ K). The SIP-GAN generator training
process is illustrated in figure 3.

Step 2: compute
the quality factor γ

Z: latent vector

dataset of encoded
network packets

Z

Step 1: a single
epoch training

Step 3: stop
condition

DCGAN

generate new
sample images
with the generator

Compute the quality
factor γ on the

generated samples

γ ≤ ε ∨ k ≥ K

true false

Go to Step 1Stop

Fig. 3. The SIP-GAN generator training process

In our SIP case, this factor corresponds to the average byte
error rate on the SIP Request Line of the generated packets, on
a given iteration of the generator training phase. The training
process of the proposed generator can be extended to other
types of network protocols with such specific critical fields by
adapting the ad hoc parameters. The approach is generic and
gives a better control over the performance of the generator
learning process.

C. Decoder

SIP-GAN decoder creates a pcap file from the generated
images. The reverse mapping function f−1 (3) and the multi-
mapping parameter l are used to convert pixels into bytes.

f−1 : [0, 255] → [0, 15]

x 7→
⌊
x− 8

16
+

1

2

⌋
(3)

The generator produces grayscale images with values in
[0, 255]. The sub-intervals defined by the encoder allow to de-
code the correct hexadecimal code or value, even if this value
is not ”perfectly” reproduced or generated by the generator.
For example, for all values in [32, 47] the reverse mapping
function f−1 (3) returns the correct value of 2. Algorithm
2 illustrates the proposed method for decoding the generated
images.

Algorithm 2 SIP-GAN decoder
Input: I: grayscale image corresponding to a SIP packet, l:

multi-mapping parameter
Output: S: a vector corresponding to a SIP packet

Initialization : S ∈ Rp, index = 0
1: for i = 0 to n and step = l do
2: for j = 0 to m and step = l do
3: S[index] = f−1(1

l2

∑i+l
a=i

∑j+l
b=j I[a, b])

4: index = index+ 1
5: end for
6: end for
7: return S

IV. EVALUATION

We evaluate the similarity and thevalidity of the SIP-
GAN and provide experimental results. Namely, we evaluate
similarity between the generated data and the original data,
and their compliance with the SIP syntax format or standards
(RFC 3261, 4566).

A. Dataset creation

To the best of our knowledge, the number of datasets
that are available or relevant in the network field and more
particular in SIP context, are very limited or does not exist
for SIP. Moreover, these datasets need to be adapted, in
order to be combined with a SIP oriented protocol, to be
compliant with SIP specific constraints (at protocol level but
also at the implementation level). Therefore, we set up a
protocol to create an adapted dataset. For this, we first consider
the SIP message (INVITE packet) to validate our approach
before considering its extension, to support other types of SIP
messages or scenarios.

To create this dataset, we first collect and analyze the
different bytes, corresponding to a set of different INVITE
type of requests (20 000). Then, we exploit the raw data to
perform data processing and calculations. The dataset creation
process is summarized and illustrated figure 4.

1) Data Acquisition: The data acquisition is based on a
different technique, in order to get a SIP compatible format
(text, ASCII) that can be processed and delivered by the SIP-
GAN modules or software agents. For this, the different bytes
of the various SIP requests are collected and analyzed. SIPp
and TCPDUMP tool kits and software are used respectively,
to generate numerous SIP calls (20000 requests in a first step)
and to collect the dataset as a pcap file (network level analysis).
This type of file is suitable for data related to a network

Fig. 4. SIP-GAN dataset creation and process

communication. Ethernet, IP and UDP headers are kept for
technical and practical considerations.

The pcap file is analyzed (Wireshark) in order to filter
out any abnormal data and then exported to a text file. This
text file contains the information associated with each packet
(hexadecimal format).

2) Data Preprocessing: After data acquisition, the prepro-
cessing is done via a Python software agent to convert the raw
data into a matrix n×m where each column corresponds to
one SIP request (INVITE). As the length of a SIP packet, or a
network packet size are variable, a padding is done to obtain
a fixed size for that each vector, that contains the data packet.

B. Performance Metrics and Experimental Conditions

There are a number of well-known metrics, for determining
the performance of a GAN in computer vision in the literature
such as: Frechet Inception Distance (FID), Annealed Impor-
tance Sampling... However, in the field of data networks, these
metrics are not adapted and specific metrics need to be defined
for each approach, to assess the validity of the generated data.
In this context, we consider and define three types of metric:

• Principal Component Analysis (PCA) between the real
data and the generated data.

• SIP success rate, which is the number of packets that are
successfully recognized as SIP messages by a packet an-
alyzer divided by the total number of packets generated.

• SIP byte error rate noted γ, which is the number of
byte values or fields in a packet, that is not ”correctly”
generated (i.e. non-compliant to SIP network standards).

Our simulations were conducted on a PC with an AMD Ryzen
9 16-Core Processor 3.40 GHz and 128 GB RAM. We used
tensorflow GPU on a NVIDIA GeForce RTX 3090. Wireshark
version 3.4.7 is used to analyze and verify the number of
request messages that are compliant with SIP standards.

C. Experimental Results

For the evaluation of SIP-GAN and in a first step, in order to
prove the similarity of the original data and the generated ones,
we used PCA (each point represents a SIP packet projected in
a 2-D data space) to verify and represent similarity, visually.
Figure 5 shows that during training iterations, the similarity
between the original and the generated data is increasing for

each iteration. Also, when the stop condition is met (γ ≤ ε
with ε = 10−4) at iteration 643 the original data and generated
ones match perfectly.

(a) (128, 66.3%) (b) (256, 77.6%)

(c) (512, 90.2%) (d) (643, 99.9%)

Fig. 5. PCA(n=2) for original vs generated SIP(training iteration,success rate)

For the second step of the evaluation, we compare an
original SIP packet coming from the SIP dataset, with a
generated one. Figure 6 shows that all of the critical fields
(in bold type) in the SIP request line and the SIP header,
are perfectly generated by SIP-GAN. The figure also shows,
that SIP-GAN is able to guarantee the uniqueness of other
critical fields (e.g. branch, tag, Call-ID...) which is an essential
property to provide a SIP generator that simulates ”real” sip
communications, in practical conditions or environments.

INVITE sip:service@10.0.0.1:5060 SIP/2.0

Via: SIP/2.0/UDP10.0.2.15:5060;
branch=z9hG4bK-3580-6881-0
From: sipp<sip:sipp@10.0.2.15:5060>;
tag=3580SIPpTag001359
To: service <sip:service@10.0.0.1:5060>
Call-ID: 1449-3580@10.0.2.15
CSeq: 1 INVITE
Contact: sip:sipp@10.0.2.15:5060
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: 128
v=0
o=user1 53655765 2353687637 IN IP4 10.0.2.15
s=-
c=IN IP4 10.0.2.15
t=0 0
m=audio 6000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

INVITE sip:service@10.0.0.1:5060 SIP/2.0

Via: SIP/2.0/UDP
10.0.2.15:5060;branch=z9hG4bK-3091-1-0
From: sipp
<sip:sipp@10.0.2.15:5060>;tag=3091SIPpTag001
To: service <sip:service@10.0.0.1:5060>
Call-ID: 1-3091@10.0.2.15
CSeq: 1 INVITE
Contact: sip:sipp@10.0.2.15:5060
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: 129
v=0
o=user1 53655765 2353687637 IN IP4 10.0.2.15
s=-
c=IN IP4 10.0.2.15
t=0 0
m=audio 6000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP Request Line

SIP Body

SIP Header

Fig. 6. SIP content comparison: original vs generated SIP packet

In the last step of our evaluation, we study the evolution
of the quality factor γ and the SIP success rate, as a function
of the number of learning iterations (e.g. EPOCH). We notice
that the gamma quality factor (i.e. the byte error rate on the

SIP Request Line) converges to zero but with a significant
fluctuation. This instability results in the SIP success rate,
which also shows a fluctuation but, as the quality factor
converges to zero, the SIP success rate converges to 1 (i.e. all
generated SIP packets are detected as SIP compliant packets).
Figure 7 shows, for example, that the SIP byte error for the
SIP Request Line is greater at iteration 230 than at iteration
220 whereas, intuitively, one might think that the greater the
number of iterations of training is important, the better the
quality of the generated packets is. Also, when we define an
ε threshold, we see that the stop condition is met, only at
iteration 643. Our training method provides a stop condition
at this iteration while giving a success rate of 99.9% for the
generated SIP packets.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0 100 200 300 400 500 600

EPOCH

GAMMA

SIP SUCCESS RATE

Fig. 7. γ and SIP success rate as function of EPOCHS

V. CONCLUSION

We propose and prototype a GAN based model to generate
realistic SIP network traffic at the packet level for data
augmentation. The use of GANs to generate SIP packets for
data augmentation is relatively new. Also, when we compare
to existing approaches, our contribution can be extended to
other communication or transaction oriented protocols (generic
approach) and consider traffic generation at both packet level
and network level. We introduce an original approach for
extracting, pre-processing and decoding network data specif-
ically based on GANs model, that addresses the specific
constraints of the network packets and protocols. Considering
SIP INVITE packets generation, our experimental testbed and
performance results, show that SIP-GAN provides a consistent,
relevant and promising solution, for SIP traffic generation in
certain conditions and constrained environments (resources,
scaling, network traffic...). This contribution paved the way for
future development of our GAN-based SIP traffic generators.
The SIP-GAN model, addresses in a first step, the generation
of individual non-sequential network packets. As future work
and perspective, we plan to generate more complex SIP scenar-
ios or attacks (ex. SIP fake register, fake bye, SIP DOS...) that
take into account the temporal aspect of the communication
or call flow, with different distributions. Extending SIP-GAN
not only to generate different SIP attack scenarios, but also
to identify and classify the SIP traffic behavior (normal and

abnormal) constitutes also a relevant perspective. Indeed, we
envision to exploit GAN in network security context, not only
to generate and detect the existing, typical SIP attacks, but also
to address the future potential ones, particularly in constrained
network environments.

REFERENCES

[1] Adriel Cheng. “PAC-GAN: Packet Generation of Net-
work Traffic using Generative Adversarial Networks”.
In: 2019 IEEE 10th Annual Information Technology,
Electronics and Mobile Communication Conference
(IEMCON). 2019.

[2] Qiumei Cheng et al. Packet-Level Adversarial Network
Traffic Crafting using Sequence Generative Adversarial
Networks. 2021.

[3] Baik Dowoo, Yujin Jung, and Changhee Choi. “Pcap-
GAN: Packet Capture File Generator by Style-Based
Generative Adversarial Networks”. In: 2019 18th IEEE
International Conference On Machine Learning And
Applications (ICMLA). 2019.

[4] Ian Goodfellow et al. “Generative Adversarial Nets”.
In: Advances in Neural Information Processing Systems.
2014.

[5] Tero Karras, Samuli Laine, and Timo Aila. “A Style-
Based Generator Architecture for Generative Adversar-
ial Networks”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR). 2019.

[6] Ahmed Meddahi and Gilles Vanwormhoudt. Téléphonie
SIP concepts, usages et programmation en Java.
Hermès - Lavoisier, 2012.

[7] Alec Radford, Luke Metz, and Soumith Chintala. “Un-
supervised Representation Learning with Deep Con-
volutional Generative Adversarial Networks”. In: 4th
International Conference on Learning Representations.
2016.

[8] Maria Rigaki and Sebastian Garcia. “Bringing a GAN
to a Knife-Fight: Adapting Malware Communication to
Avoid Detection”. In: 2018 IEEE Security and Privacy
Workshops (SPW). 2018.

[9] Tim Salimans et al. “Improved Techniques for Training
GANs”. In: Advances in Neural Information Processing
Systems. 2016.

[10] Hongwei Wang et al. “GraphGAN: Graph Representa-
tion Learning With Generative Adversarial Nets”. In:
Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence. 2018.

[11] Chuanlong Yin et al. “An enhancing framework for bot-
net detection using generative adversarial networks”. In:
2018 International Conference on Artificial Intelligence
and Big Data (ICAIBD). 2018.

[12] Lantao Yu et al. “SeqGAN: Sequence Generative Ad-
versarial Nets with Policy Gradient”. In: Proceedings
of the Thirty-First AAAI Conference on Artificial Intel-
ligence. 2017.

