Cloud Base Height Estimation Using Sky Imager and Satellite

<u>Amar Meddahi^{1,2}</u>, Yves-Marie Saint-Drenan¹, Arttu Tuomiranta², Sebastien Guillon², and Philippe Blanc¹

¹Centre O.I.E. – Mines Paris – PSL, Sophia-Antipolis (France)

²TotalEnergies, Paris-Saclay (France)

IEA PVPS Task 16, 16th Task meeting (Palaiseau) – April 3, 2025

Cloud shadows are height dependent

- **Cloud base height (CBH)** is the lowest altitude of the visible portion of a cloud.
- CBH is crucial for image-based solar forecasting, as it helps position cloud shadows more accurately on the ground and analyze the spatial variability of the solar resource.
- Existing spatiotemporal solar forecasting methods rely on:
 - Remote sensing technologies such as ceilometers
 - Ground-based cloud speed sensors
 - Distributed ground-based sky imagers for stereoscopy
- The need for additional sensors can be a limiting factor when deploying in operational sites.

Example of dual ground-based sensor setup for solar forecasting

Research Problem

- Research Question: Can a single ground-based sky imager combine with weather satellite data reduce the uncertainty in NWP-derived CBH estimates?
- Objective: Enhance the scalability of spatiotemporal solar forecasts by minimizing reliance on multiple ground-based sensors.
- Related work: (Killius et al., 2015; Kuhn et al., 2018)

Kinematic Relationship

- A cloud moving at a linear speed $v_{m/s}$ can also be characterized from groundbased imaging, where its speed is expressed in pixel speed $v_{pixel/s}$.
- The relationship between cloud pixel speed and effective cloud speed (Wang et al., 2016) is given by:

$$N * v_{m/s}$$

$$h = \frac{m/s}{2 * v_{pixel/s} * \tan(\theta_c^{max})}$$

- N: The number of pixels of the cloud map in one dimension
- θ_c^{max} : The maximum incidence angle of the sky imager

(See Appendix for another example)

Ξ

Atmospheric Motion Vectors (AMV)

- Key steps in AMV generation:
 - Identify a trackable atmospheric feature
 - Track its displacement across sequential images
 - Assign an altitude (pressure level) to the motion vector
 - Evaluate the vector's quality
- AMV provide:
 - Wind speed and direction
 - Altitude (height/pressure)
 - Quality indicators

2025-01-28 14:15:00 (MSG - HRV)

A. Meddahi et al., IEA PVPS Task 16, 16th Task meeting (Palaiseau)

Technical Challenge: One Example

- The AMV algorithm relies on two key assumptions:
 - Assumption 1 Local Wind Representation:
 - The tracked cloud or water vapour feature is assumed to move at the same speed and direction as the local wind.
 - > Good, as cloud motion itself is the primary interest.
 - Assumption 2 Motion at Cloud Top:
 - The extracted motion vector is assumed to occur at the top of the tracked feature, using Cloud Top Height (CTH) as its altitude reference.
 - Problematic, as the actual motion may not correspond to the CTH level.

(See Appendix for more info on data)

Ground-based: Wind Radar + Ceilometer + Cloud Radar

PSL 🔀

Next Steps

- Evaluate the accuracy of different selection strategies
- Develop methods for distinguishing multiple cloud layers
- Perform validation
- Test replication on other sites and weather satellite datasets

Thanks!

 The authors would like to acknowledge SIRTA for providing the data used in this study. (Haeffelin et al., 2005) https://doi.org/10.5194/ angeo-23-253-2005

How can ground-based sky imagers complement weather satellite data to reduce uncertainty in solar power availability?

Feel free to reach out! amar.meddahi@minesparis.psl.eu

ECWMF-IFS CBH

AMV: Example

Data

- Data at SIRTA
 - Sky imager: 30s resolution
 - Cloud mask: fusion of ceilometer and cloud radar (Illingworth et al., 2007)
- Satellite-derived wind speed
 - We used EUMETSAT AMV product.
- Preprocessing
 - Solar elevation > 0° (sufficient luminosity for sky imager)
 - Cloud heights:
 - Threshold <= 12500m
 - Applied a 15-min centered median filter (sensitive to the dominant cloud layer), aligned with previous studies.

